Visar inlägg med etikett Datorer. Visa alla inlägg
Visar inlägg med etikett Datorer. Visa alla inlägg

måndag 2 september 2019

AI, etik och meningen med livet: funderingar kring Liv 3.0



För att programmera en vänlig AI måste vi fastställa meningen med livet.
                                                              -- Max Tegmark, Liv 3.0 

Vilken typ av utmaningar kommer vi att möta när maskininlärning blir vanligare inom sjukvård, rättsväsende och krigföring? Hur gör vi livet drägligt och meningsfullt om AI tar över alla jobb? Och vad skulle hända om någon utvecklade en AI med generell intelligens på mänsklig nivå - eller högre?

Den här typen av frågor tas upp i fysikern Max Tegmarks bok Liv 3.0, som kom ut på svenska 2017 men som jag inte kommit mig för att läsa förrän nu. Den omfattar åtta kapitel med ämnen som hur fysiska föremål kan byggas för att kunna minnas och utföra beräkningar, nära förestående utmaningar inom AI, intelligensexplosion med tillhörande framtidscenari
er, samt människors och maskiners målsättningar och frågan om hur man vet att någon är medveten. Boken ger en bred översikt över både artificiell intelligens och ett antal andra frågor som hänger ihop med AI och dess effekter. Tegmark lyckas också nyansera mediebilden av AI i flera avseenden och han är hela tiden noga med att påpeka när ledande experter är oense i någon fråga (som t.ex. hur lång tid det kommer att ta för oss att utveckla en artificiell intelligens som överträffar oss själva).

Ett avgörande syfte med boken är att lyfta diskussionen om de etiska, praktiska och samhälleliga problem som utvecklingen inom AI kan ställa oss inför. Tegmark tar upp frågor som dyker upp både på kort sikt, som AI-styrda vapen, medellång sikt (några tusen år), och riktigt lång sikt (miljarder år). Diskussionen förs mestadels utifrån attityden att generell artificiell intelligens på mänsklig nivå är något som kan utvecklas, och antagligen kommer att utvecklas inom överskådlig framtid (generell artificiell intelligens syftar här på ett system som flexibelt kan ta sig an många olika typer av problem, till skillnad från specialiserade AI:n som bara är bra på att spela go eller köra bil, medan "superintelligens" syftar på generell AI över mänsklig nivå). Även när det gäller våra nuvarande specialiserade AI, som AlphaGo eller algoritmer för självkörande bilar, är Tegmark tydligt imponerad. Just när det gäller självkörande bilar skriver han om dem som om de redan var verklighet, vilket jag tycker är lite väl optimistikt med tanke på hur begränsade dagens autonoma fordon ändå är. Även när det gäller maskinöversättningar med Google translate är han betydligt mer positiv än jag själv, fast det kan ju också bero på hur petig man är med språket.

Jag misstänker att Tegmark ser AI som en mer eller mindre naturlig fortsättning av livets utveckling. Namnet på boken pekar också i den riktningen, eftersom det syftar på Tegmarks klassificering av olika typer av liv som förklaras i första kapitlet. Liv 1.0 är organismer där både kropp och förmågor (som Tegmark jämför med hårdvara och mjukvara) är helt bestämda av genetiska förutsättningar och inte förändras under organismens livstid, medan liv 2.0 är organismer vars fysiska form är genetiskt bestämd men som kan lära sig nya förmågor och beteenden (exempelvis vi själva, som kan lära oss flera språk, att spela instrument och så vidare). Liv 3.0 är då liv som kan ändra både hårdvara och mjukvara, som ett AI som både kan lära sig nya saker och installera sig själv i en bil, ett flygplan eller nån mer avancerad robot alltefter behov.

En annan sak som har stor påverkan på hur de här frågorna läggs fram i boken är Tegmarks övertygelse, framlagd redan i första kapitlet, att medvetande är det som ger mening åt universum och att ett universum utan medvetna varelser är meningslöst. Ett scenario där AI aldrig lyckas utveckla medvetande blir då ett klart sämre scenario än ett där medvetna, intelligenta maskiner utforskar världsrymden långt bortom de gränser som sätts av vad den mänskliga kroppen tål. Det skulle kunna vara en kombination av synen på AI som nästa utvecklingssteg och synen på medvetande som meningsskapande som gör att kapitel 6, det om de riktigt långa tidsperspektiven, upptas så mycket av hur våra hypotetiska AI-ättlingar skulle kunna utvinna energi ur svarta hål och kommunicera över avståndet mellan galaxerna. (Om du ska läsa boken och inte tycker att just detta tema verkar intressant så går det alldeles utmärkt att hoppa över kapitel 6 och gå rakt på diskussionen om mål i kapitel 7. Är du däremot fascinerad av Dysonsfärer och liknande är det högintressant.)

Synen på medvetande slår också igenom i de sista två kapitlen, som handlar om vilka mål AI borde ha och hur man ser till att de har rätt mål respektive hur vi egentligen kan avgöra ifall ett AI (eller något annat synbart intelligent system) är medvetet eller ej. Det är här Tegmark drar slutsatsen att vi innan vi utvecklar superintelligent AI skulle behöva lösa några små filosofiska bryderier som vi tampats med sen före Sokrates: Otvetydiga definitioner av sådant som "mening" och "liv", klarhet i vad som egentligen är "det yttersta etiska imperativet" och naturligtvis frågan om vad medvetande egentligen är.

Jag skulle tro att den sistnämnda frågan är den vi har bäst möjligheter att göra framsteg med - eftersom medvetande är något som existerar är det åtminstone teoretiskt möjligt att vi kan hitta ett sätt att observera det och reda ut vad som krävs för att det ska uppstå. Etiska imperativ är det värre med, framför allt om man som Tegmark vill att de ska uttryckas i "fysiska kvantiteter såsom partikelarrangemang, energi och entropi". Tegmark medger visserligen att vi inte egentligen har någon anledning att tro att våra önskningar när det t.ex. gäller mänsklighetens överlevnad är förenliga med den typen av väldefinierade mål, men han har helt klart inte gett upp. För egen del anser jag att om vi måste veta vad livets mening är för att inte bli utrotade av superintelligent AI så är det ett av de bästa argument jag hört för att inte utveckla AI med superintelligens. (Jag hoppas återkomma till vissa saker som tas upp i de här kapitlen, samt delvis i epilogen, i en senare text.)

Liv 3.0 är en intressant och läsvärd bok, men beroende på hur mycket man delar författarens uppfattning om meningen med universum kan vissa delar kännas lite onödiga. Personligen är jag, även efter att ha läst den, mer bekymrad över vad vi människor kan åstadkomma med AI som inte är smartare än vi själva än över vad superintelligent AI kan ställa till med, men jag är glad att det finns sådana här böcker som lyfter frågorna och bidrar till bättre kunskap om vilka problem som skulle kunna uppstå.

söndag 5 maj 2019

Maskininlärning i materialfysiken

Härom veckan läste jag ett teknikoptimistiskt blogginlägg på temat maskininlärning av den amerikanske skeptikern Steven Novella. Han skrev bland annat om en amerikansk forskargrupp som lärt ett neuralt nätverk bestämma egenskaper hos dopat grafén, alltså grafén där några av kolatomerna är utbytta mot andra ämnen, utifrån placeringen på dopatomerna. Novella valde att framställa det som att det neurala nätverket utförde decennier av forskning inom loppet av några dagar och skulle kunna ge oss praktiska tillämpningar av grafén betydligt tidigare än om man inte använt maskininlärning.

Naturligtvis var jag tvungen att leta rätt på artikeln och ta reda på vad forskargruppen egentligen hade gjort.

Själva forskningsfrågan
 
Artikeln i fråga är publicerad i npj Computational Materials (den är för övrigt tillgänglig gratis) och enligt titeln handlar den om att förutsäga storleken på det så kallade bandgapet i material som består av en kombination av grafén och bornitrid. Bornitrid är ett material som består av två sorters atomer, bor och kväve, som sitter ihop i ett hexagonalt mönster precis som kolatomerna i grafén. Bornitrid kan också precis som grafén förekomma som ett enda supertunt lager av atomer. De här likheterna mellan de båda materialen är en av anledningarna till att man försöker kombinera dem.

Den andra anledningen är att medan grafén leder elektrisk ström väldigt väl är det svårt att få bornitrid att leda någon ström alls. Den här skillnaden kommer sig av att det krävs rätt lite energi för att få elektronerna i grafén att börja flytta på sig, medan elektronerna i bornitrid behöver ett stort energitillskott för att kunna röra sig alls. Det här energitillskottet som krävs för att elektronerna ska kunna röra sig kallas också bandgap, eftersom det motsvarar ett 'gap' i energi mellan olika tillstånd som elektronerna kan befinna sig i. Grafén har alltså ett extremt litet bandgap, bornitrid ett stort bandgap. Genom att kombinera de två materialen vill man skapa ett hybridmaterial med ett lagom stort bandgap, som man sedan kan använda i t.ex. elektronik.

Emellertid har det visat sig att man inte bara kan ersätta några kolatomer med bor och kväve hur som helst. Hur bor- och kväveatomerna är placerade i förhållande till varandra spelar roll för hur stort bandgapet blir. Vad den amerikanska forskargruppen försökt göra är att förutsäga hur stort bandgapet blir baserat på placeringen av bor- och kväveatomer med hjälp av artificiella neurala nätverk, mer specifikt så kallade CNN (convolutional neural networks - man skulle kunna kalla dem faltningsnätverk på svenska men det skulle antagligen inte göra dem lättare att förstå).

De neurala nätverken
 
CNN är en typ av neurala nätverk som tagits fram för att plocka ut karaktäristiska drag ur bilder och sedan klassificera bilderna utifrån dem - de är till exempel användbara för ansiktsigenkänning och när självkörande bilar ska se skillnad på en fotgängare och en vägskylt. Den grundläggande principen i ett CNN kan liknas vid att jämföra små områden i en bild med mindre, enklare bilder och ge en positiv respons om de liknar varandra. Om du till exempel har en bild av ett hus och den mindre bilden innehåller ett lodrätt streck så kan du få en positiv respons när du kommer till hörnen, fönstren eller dörren eftersom de alla innehåller raka, lodräta partier. I ett CNN måste man dock represenera båda bilderna som matriser av tal, och man har flera 'lager' där resultatet av en jämförelse i sin tur jämförs med fler matriser (detta behövs för att man ska kunna känna igen mer komplicerade former i en bild, t.ex. ansiktsdrag).

För att kunna använda CNN till grafénproblemet ovan valde forskarna att använda datormodeller där par av olika atomer representeras av siffror. När de introducerar bor- och kväveatomer i grafén sitter de ofta i par, med en bor och en kväve bredvid varandra. Detta gör det möjligt att låta ett bor-kvävepar motsvaras av en etta och de vanliga kol-kolparen av nollor, för att på så sätt göra en 'bild' som olika typer av CNN kan hantera. De konstruerade också sina nätverk till att ge storleken på bandgapet som utdata.

Neurala nätverk behöver tränas med relevant data för att funka, vilket oftast innebär att automatiskt jämföra nätverkets utdata med det önskade resultatet, räkna ut avvikelsen och med hjälp av den justera det neurala nätverket till att ge ett bättre svar. För att kunna träna sina neurala nätverk genererade forskarna därför flera tusen möjliga konfigurationer i form av datormodeller och räknade ut bandgapet för varje konfiguration med hjälp av simuleringar. De färdigtränade nätverken användes sedan för att förutsäga bandgapet för ytterligare ett antal konfigurationer som man visste det beräknade bandgapet för men som inte användes i träningen. Resultaten visade sig vara mycket lovande.

Vad man lär sig av detta
 
Så vad blir effekten av den här forskningsstudien? Man har lyckats visa att det går att förutsäga vissa egenskaper hos material med hjälp av neurala nätverk, vilket borde innebära att de som forskar på grafén och andra tvådimensionella material får ytterligare ett verktyg som de kan använda i sin forskning. Det är fortfarande en lång väg från den här studien till elektronik baserad på grafén och bornitrid, men eventuellt kan den göra det enklare att veta vad som är rätt material att satsa på.

En annan intressant sak med den här studien är vad den mellan raderna säger om maskininlärningens begränsningar. För att det alls ska fungera behöver de neurala nätverken få all relevant data i en form som kan behandlas, vilket innebär att det krävs mycket kunskap om grafén och bornitrid för att ens formulera problemet på ett sätt som kan angripas med neurala nätverk. I den här studien har forskarna t.ex. fokuserat helt på var par av bor och kväve befinner sig i förhållade till varandra och skalat bort alla andra drag hos materialet, antagligen baserat på vad man redan vet om de här materialen. 

En annan och rätt välkänd begränsning hos neurala nätverk är att det är svårt att förstå varför de fungerar som de gör, ens när de ger bra resultat. I en sådan här studie hade det varit väldigt intressant att se vad som är gemensamt för konfigurationer som ger lågt respektive högt bandgap, men det är inte information man enkelt kan få från det neurala nätverket och artikelförfattarna verkar inte ha gjort någon ansats att försöka. Jag misstänker starkt att en metod för att förstå vad som händer inne i nätverken är nödvändig om den här typen av studier ska kunna hjälpa oss att förstå materialen man studerar.

Som ni kanske förstår håller jag inte med Steven Novella om att denna enda och egentligen rätt begränsade studie motsvarar decennier av forskning och i sig tar oss betydligt närmre grafén-elektronik, men resultaten i den är ändå intressanta som ett exempel på hur neurala nätverk kan användas inom materialfysiken.

söndag 17 september 2017

Kolelektronik och bandgapets betydelse

Det finns en självuppfyllande profetia som många förmodligen hört talas om, som kallas Moores lag. Den formulerades av Intels grundare Gordon E. Moore och säger att antalet transistorer som får plats på ett chip växer exponentiellt. Det betyder att man kan tillverka mer och mer kraftfulla processorer och därmed också snabbare och bättre datorer. Att jag kallar det en självuppfyllande profetia beror på att både industrin och forskarvärlden jobbat rätt hårt genom åren för att Moores lag ska fortsätta gälla.

På senare tid har det dock börjat gnissla lite i maskineriet, i takt med att man börjar närma sig gränserna för dagens teknik. Transistorerna i dagens datorer är gjorda i halvledarmaterialet kisel, och det finns gränser för hur små kiselkomponenter kan bli innan man börjar få problem med diverse lustiga kvanteffekter. Det är med andra ord hög tid för branschen att hitta på nåt nytt.

Eftersom grundämnet kol finns med i titeln på den här texten kunde man tro att lösningen skulle vara supermaterialet grafen, men grafen är faktiskf inte det mest uppenbara valet om man vill ersätta kisel rakt av. För att förstå varför behöver vi ta oss en närmare titt på vad en transistor gör, och varför det är så viktigt att kisel är en halvledare. 

Först måste vi dock påminna om vad en halvledare är (om man redan har koll på detta kan man hoppa till nästnästa stycke). Många material i vår omgivning är isolatorer som inte leder elektrisk ström alls, som glas och trä till exempel. Det beror på att elektronerna i dessa material sitter fast. Elektroner i ett fast material kan existera i olika energitillstånd, så kallade band. Om ett band blir helt fullt av elektroner kan de elektronerna inte förflytta sig genom materialet. Det är så det ser ut i exempelvis glas: vissa band är helt fulla, andra helt tomma, och om en elektron ska flytta sig från ett fullt band till ett tomt krävs stora mängder energi (ofta så mycket att materialet smälter istället). Å andra sidan har vi också metaller som koppar eller silver, som leder elektrisk ström bra. Det beror på att istället för bara fulla och tomma band har de också ett lite halvfullt band, och elektronerna där kan lätt fara iväg om de känner av ett elektriskt fält (som när du drar en koppartråd mellan polerna på ett batteri till exempel).

Om vi undersöker en halvledare vid låg temperatur (säg i ett bad av flytande kväve) ser de ut som isolatorerna trä och glas, med helt fulla eller helt tomma band. Om vi tar upp dem ur kvävebadet och låter dem nå rumstemperatur ser vi dock att de börjar leda elektrisk ström, inte alls lika bra som metaller men mycket bättre än en genomsnittlig träbit. Det beror på att energiskillnaden mellan de fulla och de tomma banden är tillräckligt liten för att värmeenergin vid rumstemperatur ska kunna knuffa upp några elektroner från de fulla banden till det tomma. Elektronerna som hamnat i de tomma bandet kan då börja förflytta sig, och eftersom de lämnat ett tomt utrymme bakom sig i det tidigare fulla bandet kan elektronerna där också bli rörliga. Energiskillnaden mellan det fulla och det tomma bandet kallas bandgap.

Halvledare är viktiga inom elektronik för att man relativt enkelt kan justera deras ledningsförmåga på olika sätt. Om man till exempel tillsätter små mängder av ett annat grundämne, ofta gallium eller arsenik, till kisel kan man höja ledningsförmågan. Detta kallas att dopa halvledaren och beror på att de andra grundämnena skapar "mellannivåer" mellan det fulla och det tomma bandet. Eftersom de här dopämnena själva har antingen fler eller färre elektroner per atom än den ursprungliga halvledaren får man dock två sorters dopning: Om dopatomen har fler elektroner än halvledaren får man ett överskott av elektroner (n-doping) och har den färre får man ett underskott som leder till nåt som kallas elektron-hål (p-doping).

Man kan också styra ledningsförmågan efter att halvledaren tillverkats. Säg till exempel att du har tre halvledar-bitar, två p-dopade på vardera sidan och en n-dopad i mitten. Den tingesten kommer knappt att leda någon ström alls, vilket beror på att det är svårt för elektronerna att ta sig från ett p-dopat område till ett n-dopat. Om man nu lägger ett elektriskt fält på den n-dopade biten i mitten, på tvärs mot de p-dopade delarna, så kan man få elektronerna att samlas i en del av det n-dopade området. Blir fältet tillräckligt starkt kan det till och med skapa en liten kanal där det är underskott på elektroner, och då börjar hela strukturen leda ström (eftersom vi har underskott på elektroner på båda sidor och i en kanal i mitten kan de ta sig hela vägen igenom). Detta är grundprincipen bakom en fälteffekttransistor, den transistortyp som gör jobbet i din dator, platta eller smartphone.

Men grafen då? Grafen räknas som en halvledare, men har den egenheten att dess bandgap är noll. Det betyder att i transistorsammanhang beter sig grafen nästan som en metall, och går därför inte att använda i transistorer som det är. De som tillverkar transistorer i grafen måste därför försöka öppna upp ett bandgap på något sätt, exempelvis genom att placera grafenet på olika substrat eller modifiera ytan. (En annan approach är att frångå fälteffekt-tekniken och satsa på att manipulera elektronernas spin med ett magnetfält istället.)

Emellertid behöver man inte ge upp bara för att grafen har visat sig vara besvärligt - det finns nämligen andra spännande kolstrukturer att använda. En variant som man jobbat på länge, men som verkar ha fått mycket uppmärksamhet på sistone, är så kallade kolnanorör. Ett kolnanorör kan beskrivas som ett hoprullat grafenplan, och är nästan lika häftigt som grafen - nästan lika bra ledningsförmåga, mekaniskt starkt, lätt och bra på att leda värme. Nanorör kan dessutom bete sig antingen som metaller eller som halvledare, beroende på exakt hur de är "hoprullade". Lyckas man bara välja ut de halvledande nanorören så kan man få en superliten, supertunn transistor.

Emellertid vill forskare i regel ta det längre än så. Ett exempel är den grupp från Stanford som konstruerat ett tredimensionellt chip där samtliga transistorer baseras på halvledande kolnanorör. Det är inte hela strukturen som består av kol - den står på en bottenplatta av konventionella halvledare, arbetsminnet består av metall och hafniumoxid och nanorören är förbundna med metalliska elektroder. Ändå är nanorörs-transisitorerna speciella, och inte bara för att nanorören är så tunna. Eftersom de har en mycket lägre tillverkningstemperatur än ett vanligt kiselchip kan man bygga på den tredimensionella strukturen lager för lager, istället för att producera varje lager för sig och sedan bygga ihop dem i efterhand. Det har möjliggjort en tätare struktur med snabbare informationsöverföring. Prototypkretsen som forskargruppen konstruerat kan känna igen vanliga gaser i atmosfären, genom att det översta lagret kolnanorör fungerar som sensorer och de undre lagren har programmerats med en självlärande algoritm som klassificerar sensorernas signaler.

Ett sånt tredimensionellt chip är ju onekligen lite häftigt, och lär bli ännu häftigare när tillverkningsmetoderna blivit mer förfinade. En möjlig förbättring diskuteras längst ner i artikeln jag länkat till ovan. Där påpekas att en annan forskargrupp, denna gång från företaget IBM, lyckats minska ytan som en kolnanorörs-transistor tar upp ytterligare genom att förbättra kontakten mellan kolnanoröret och molybdenelektroderna som leder signalen till och från röret. De har lyckats med detta genom att skapa starka kovalenta bindningar mellan elektroden och nanoröret, vilket ger bättre ledningsförmåga över en mindre kontaktyta.

Moore's lag kanske kan klara sig ett tag till trots allt.


tisdag 10 december 2013

På en skala - om Nobelpriset i kemi

Man hade kunnat tro att jag skulle skriva något om Higgs-partikeln idag eftersom jag är fysiker, men det tänkte jag inte göra. Anledningen är att elementarpartikelfysik och högenergifysik ligger ganska långt bort från det jag själv gör, och det finns andra som kan skriva bättre om Higgsen (Forskning och Framsteg, till exempel). Istället är det årets kemipris som ligger åtminstone i närheten av en del saker jag gör. Eftersom det dessutom lider av en ganska kraftig överförenkling i pressmeddelandet så tänkte jag skriva en liten text om det här.

Nobelpriset i kemi i år tilldelas Martin Karplus, Michael Levitt och Arieh Warshel "för utvecklandet av flerskalemodeller för komplexa kemiska system". De har lyckats kombinera tre olika sorters datormodeller för att få en bra beskrivning av till exempel reaktioner mellan biomolekyler (proteiner, etc.) utan att för den skull behöva orimligt långa beräkningstider. Detta har man åstadkommit genom att dela in systemet man vill studera i olika delar, som beskrivs med olika metoder.

Vi kan börja längst in, med de atomer som är direkt inblandade i den kemiska reaktionen. För att få en bra bild av vad som händer här behöver man skaffa sig en modell av hur atomernas elektroner beter sig. Det är nämligen fördelningen av elektroner runt atomkärnorna som avgör om atomerna sitter ihop med varandra eller inte, och hur stark bindningen är (vilket jag skrivit om här). För att hålla koll på elektronerna använder man det som kallas första prinicp-beräkningar, där man löser Shrödingers ekvation. Med sådana metoder utgår man från att alla atomkärnor sitter på ett visst sätt och sedan beräknar man hur elektronerna fördelar sig runt dem. Utifrån elektronernas fördelning kan man räkna ut vilka krafter som verkar på atomkärnorna och hur de kommer att flytta på sig på grund av de krafterna. (Eller hur de borde flytta på sig för att få lägsta möjliga energi. Det beror lite på vad man är intresserad av.)

Nästa område innefattar alla atomer som är en del av molekylerna men som inte är direkt involverade i reaktionen. Eftersom biomolekyler ofta är ganska stora så kan det finnas många sådana atomer, så många att om man skulle beskriva alla med första princip-metoder skulle man knappt kunna utföra beräkningen. Istället beskriver man dem med hjälp av så kallade modellpotentialer. En modellpotential är konstruerad för att beskriva hur krafterna mellan atomer i ett material ser ut, till exempel kan en modellpotential innehålla termer som motsvarar kraften mellan två elektriskt laddade partiklar (jonbindning) eller vinkelberoende termer som motsvarar kovalenta bindningar. Oftast tar man hjälp av resultat från första princip-beräkningar och experiment för att avgöra exakt hur potentialen ska se ut. Eftersom man inte måste hålla reda på elektronerna utan bara betraktar atomerna som bollar med en viss massa så kräver sådana här beräkningar mycket mindre datorkraft än första princip-beräkningar.

Det är för övrigt i kopplingen mellan första princip-metoder och modellpotentialer som pressmeddelandet i mitt tycke är överdrivet förenklat. Där står att pristagarna "lyckades få Newtons klassiska fysikaliska lagar att samarbeta med den fundamentalt annorlunda kvantfysiken", men det är inte riktigt så enkelt. Både första princip-beräkningar och modellpotential-beräkningar använder nämligen Newtons klassiska lagar för att beräkna hur atomkärnorna, som står för större delen av massan, rör sig. Skillnaden mellan metoderna ligger i hur man beräknar kraften mellan kärnorna, och där är första princip-metoderna direkt grundade på kvantfysiken medan modellpotentialerna är det indirekt, genom att de konstrueras för att efterlikna resultatet av första princip-beräkningar (eller experiment). Så det handlar inte riktigt om att jämka ihop kvantfysik och klassisk fysik, utan om två sätt att beskriva krafter i ett system - vilket naturligtvis inte gör pristagarnas insats mindre fantastisk.

Slutligen måste vi också beskriva det som finns runt omkring molekylerna man vill studera. Eftersom det är biomolekyler vill man antagligen ofta studera dem i någon form av vattenlösning, men man är inte speciellt intresserad av hur varje enskild vattenmolekyl beter sig. Därför struntar man i molekylerna och beskriver omgivningarna som en slät, homogen massa. Det är ett ännu mindre krävande när det gäller datorkraft än vad molekylärdynamik är, men går såklart inte att använda om man vill veta hur atomerna rör sig.

En annan intressant sak är att principen bakom Nobelpristagarnas insats, d.v.s. att använda olika beräkningsmetoder för olika delar av ett system, numera också används för att räkna på t.ex. hur sprickor bildas i material. Faktum är att det var det första jag tänkte på när jag hörde talas om vad de fått priset för.


lördag 29 oktober 2011

Varför simuleringar?

Naturvetenskap handlar om att studera hur verkligheten fungerar. Det mest omedelbara sättet är att betrakta världen omkring sig på olika sätt, eller ännu hellre ändra på saker i den och se vad konsekvenserna blir. Kort sagt, att göra experiment.

Traditionellt sett finns det ett annat sätt att lära sig saker om verkligheten: Man kan utgå ifrån det man redan vet, formulera regler för hur det beter sig när man ändrar på något och sedan försöka förutsäga vad som kommer att hända när man ändrar på något annat. Alltså, man kan ägna sig åt teorier.

När datorer utvecklades och blev snabbare, kraftfullare och billigare dök det upp något som vissa hävdar är ett tredje alternativ: Simuleringar. Man kan låta datorn räkna åt en, och på det sättet räkna ut saker som är oerhört svåra att komma åt om man måste räkna för hand. När man gör en simulering med så kallad molekylärdynamik låter man datorn lösa Newtons ekvationer (kraften på en partikel är lika med accelerationen gånger massan) för ett system av atomer. Från en sådan simulering kan man få ut systemets totala energi, tryck, temperatur etc. Man kan ändra temperaturen och studera vad som händer när materialet smälter, eller variera trycket och se hur mycket det kan tryckas ihop.

Men vad är det här bra för? Man kan ju faktiskt studera det verkliga materialet, och bygga upp sina teorier utifrån det. Ja, det stämmer, men med beräkningarna kan man göra saker som är svåra att göra i ett experiment på ett ganska lätt sätt (ofta är det också tvärt om, det som är lätt att göra experimentellt kan vara svårt att upprepa i en simulering). För att fortsätta med exemplet molekylärdynamik så bygger den ofta direkt på experimentella data eftersom man anpassar sin modell för hur atomerna påverkar varandra till data från experiment. När man väl har en fungerande modell kan man exempelvis följa en enskild atom som rör sig i ett material, vilket är mycket svårt i experiment- i modellen är atomerna numrerade men det är de inte i verkligheten. Man kan också öka eller sänka tryck och temperatur mycket snabbare än i verkligheten, eller studera materialet vid extremt höga eller låga temperaturer.

En annan sak kan vara att man behöver göra en simulering för att se hur väl ens teori stämmer. Så är ofta fallet med så kallad densitetsfunktionalteori. I densitetsfunktionalteori räknar man på hur atomerna påverkar varandra genom att beräkna tätheten av så kallade valenselektroner mellan atomerna. Modellen utgår från grundläggande beskrivningar av hur elektroner och atomkärnor samverkar med varandra, men för att kunna använda dem praktiskt måste man göra några förenklingar. Här kan det vara intressant att göra simuleringar bara för att testa hur bra modeller som enbart grundar sig på teori står sig mot resultat från experiment.

Så simuleringar är spännande, bland annat för att de låter oss testa saker vi inte kan testa på något annat sätt och för att de låter oss se följderna av våra teoretiska modeller på ett sätt som vi inte skulle kunna göra annars.